Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrey V. Sokolov, Anna V. Vologzhanina* and Petr P. Purygin

Department of Chemistry, Samara State University, Acad. Pavlov str. 1, 443011 Samara, Russian Federation

Correspondence e-mail: vologzhanina@mail.ru

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.046 wR factor = 0.143 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1H-Benzimidazole-1-carbohydrazonamide

The title compound, $C_8H_9N_5$, was prepared by the reaction of 1-cyanobenzimidazole with a twofold excess of hydrazine. The crystal packing is stabilized by weak intermolecular $N-H\cdots N$ hydrogen bonds and $\pi-\pi$ interactions.

Received 7 June 2006 Accepted 28 June 2006

Comment

N-Substituted benzimidazole (BzIm) derivatives are widely used in preparative organic syntheses (Staab, 1962). Usually, the BzIm derivatives are not stable in solution (Staab, 1962). Recent studies of *N*-benzimidazole carbohydrazonamides (Pan'kov *et al.*, 2001*a,b*) have shown their stability under normal atmospheric pressure in solution and in the solid state for a period of one month and more. The title compound, (I), was prepared by the reaction of 1-cyanobenzimidazole with hydrazine with a twofold excess of hydrazine. Here we present its crystal structure.

The bond lengths and angles in (I) (Fig. 1) are normal (Allen *et al.*, 1987). In the crystal structure, the N atoms of the carbohydrazonamide group form four weak intermolecular $N-H\cdots N$ hydrogen bonds with three neighboring molecules

© 2006 International Union of Crystallography All rights reserved (Table 1), leading to the formation of a three-dimensional hydrogen-bonded network. The short intermolecular contact $C2 \cdot \cdot \cdot C6^{iv}$ of 3.445 (8) Å indicates the presence of stacking interactions [symmetry code: (iv) $1 - x, \frac{3}{2} + y, \frac{5}{2} - z$], which contribute to the stabilization of the crystal structure (Fig. 2) along with the $N-H \cdots N$ hydrogen bonds.

Experimental

1H-Benzimidazole-1-carbohydrazonamide was prepared according to the known procedure (Pan'kov et al., 2001a). A portion of hydrazine hydrate (0.2 ml, 4.1 mmol) was added to a solution of 1cyanobenzimidazole (0.3 g, 2.1 mmol) in 3 ml of 2-propanol. The reaction mixture was stirred and the temperature increased to 313-323 K. After 15 min it was cooled to room temperature and filtered. The product was washed with 2-propanol and recrystallized from ethanol. Yield 91%, m.p. 436-437 K.

Z = 4

 $D_x = 1.418 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^-$

T = 293 (2) K

 $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 27.1^{\circ}$

Prism, colorless

 $0.60\,\times\,0.20\,\times\,0.20$ mm

2 standard reflections

+ 0.29P]

every 98 reflections

intensity decay: 2%

Crystal data

C₈H₉N₅ $M_r = 175.20$ Monoclinic, $P2_1/c$ a = 7.389 (2) Å b = 8.152 (2) Å c = 13.660 (3) Å $\beta = 94.25 \ (3)^{\circ}$ V = 820.5 (3) Å³

Data collection

Siemens P3/PC diffractometer $\omega/2\theta$ scans Absorption correction: none 1929 measured reflections 1795 independent reflections 1448 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0798P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.046$ wR(F²) = 0.143 where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.011$ S = 1.10 $\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$ 1795 reflections $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$ 118 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

0.90	2.30	3.181 (2)	165
0.90	2.37	3.224 (2)	158
0.90	2.21	3.069 (2)	160
0.90	2.23	3.083 (2)	158
	0.90 0.90 0.90 0.90	0.90 2.30 0.90 2.37 0.90 2.21 0.90 2.23	0.90 2.30 3.181 (2) 0.90 2.37 3.224 (2) 0.90 2.21 3.069 (2) 0.90 2.23 3.083 (2)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y, -z + 2; (iii) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$.

All H atoms were located in a difference map and refined as riding with C-H = 0.93 Å, N-H = 0.90 Å, and $U_{iso}(H) = 1.2U_{eq}(parent$ atom).

Figure 2

The crystal packing in (I). Hydrogen bonds are shown as dashed lines. The H atoms not participating in hydrogen bonds have been omitted for clarity.

Data collection: P3/PC (Siemens, 1989); cell refinement: P3/PC; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and TOPOS (Blatov et al., 1999); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Laboratory of X-ray Diffraction Studies of the A. N. Nesmeyanov Institute of Organoelement Compounds RAS for collecting the X-ray data.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (1999). Russ. J. Coord. Chem 25 453-456

Pan'kov, S. V., Belyakova, N. A., Vishnyakov, V. V. & Purygin, P. P. (2001a). Russ. J. Gen. Chem. 71, 763-767.

Pan'kov, S. V., Belyakova, N. A., Vishnyakov, V. V. & Purygin, P. P. (2001b). Russ. J. Org. Chem. 37, 426-429.

Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1989). P3/PC and XDISK. Release 4.1. Siemens AXS Inc., Madison, Wisconsin, USA.

Staab, H. A. (1962). Angew. Chem. Int. Ed. Engl. 1, 351-367.